Электротехника Компьютерный монтаж Основы Flash Corel DRAW Учебник по схемотехнике Законы Кирхгофа P-CAD Autodesk Mechanical Desktop ТОЭ Атомная физика OrCAD Теория множеств Оптическая физика Дифференциалы Интегралы Магнитные свойства Зонная теория Квантовая статистика Квантовая физика Магнитное поле Электростатика Геометрическая оптика Основы теории относительности Волновая функция Контрольная по математике

Зонная теория твердых тел Курс лекций

Механизм электропроводности собственного полупроводника

На рисунке уровень Ферми находится в середине запрещенной зоны, учитывая симметрию распределения Ферми – Дирака относительно энергии Ферми eF и очевидную симметрию функции f(E) в промежутке между потолком валентной зоны и дном зоны проводимости.

* Определим вероятность перехода электрона в зону проводимости для алмаза, ширина запрещенной зоны eg»5,5 эв. при комнатной температуре КТ = 0,026 эв. для дна зоны проводимости

Таким образом, вряд ли даже один из каждых 1044 электронов в валентной зоне будет иметь энергию, достаточную для перехода в зону проводимости при комнатной температуре. Поскольку каждый моль вещества содержит около 1024 атомов. Следовательно, алмаз – хороший изолятор.

Определим для  вероятность при КТ = 0,026 эв. (комнатная)

В этом случае приблизительно один валентный электрон из миллиона может при возбуждении перейти на дно зоны проводимости и в зоне проводимости можно найти электроны.

Их будет значительно меньше, чем в случае проводника, у которого f(e) в зоне проводимости составляет порядка единицы. Однако в зоне проводимости полупроводника все же имеется достаточно электронов и они вносят вклад в электропроводность полупроводника. В полупроводниках f(e) сильно зависит от температуры. Возрастание температуры на 100К относительно комнатной (3000К) т.е. всего на 3% вероятность перехода электронов в зону проводимости увеличивается приблизительно на 30%. С уменьшением ширины запрещенной зоны чувствительность полупроводников к температуре возрастает.

Элементы термодинамики Обратимые и необратимые процессы. Круговой процесс. Цикл Карно и его КПД для идеального газа. Принцип работы холодильных установок. Тепловые насосы и кондиционеры. Описание реальных
систем. Реальные газы. Пределы применимости законов идеального газа. Силы и потенциальная энергия межмолекулярного взаимодействия. Уравнение Ван-дер-Ваальса.
Опытные законы диффузии, теплопроводности и внутреннего трения. Связь между коэффициентами переноса.

Математика решение задач