Термоядерный синтез Физические основы ядерного синтеза Токамак Реакторная технология Перспективы термоядерной энергетики Атомные реакторы на быстрых нейтронах Корпус ядерного реактора Атомная энергетика

Термоядерный синтез Создание термоядерного реактора

Термоядерный синтез

Термоядерные реакции - реакции слияния (синтеза) легких атомных ядер в более тяжелые, происходящие при очень высоких температурах (порядка десятков миллионов градусов и выше

Запасы дейтерия, который можно использовать в D - T реакции, практически неограниченны. В гидросфере Земли запасено 4*1013 т дейтерия, который может явиться основным термоядерным горючим.

Ядерные реакции в звездах Прежде чем рассматривать ядерные реакции в космосе, коротко остановимся на проблеме звездной эволюции. Окружающий нас мир состоит из различных химических элементов. Как образовались эти элементы в естественных условиях? В настоящее время общепризнанной является точка зрения, что элементы, из которых состоит Солнечная система, образовались в ходе звездной эволюции.

Сжатие звездного вещества за счет гравитационных сил приводит к повышению температуры в центре звезды, что создает условия для начала ядерной реакции горения водорода

Следующий этап термоядерной реакции - горение гелия

В момент взрыва сверхновой температура резко повышается и во внешних слоях звезды происходят ядерные реакции так называемый взрывной нуклеосинтез.

Эволюция Вселенной начинается с Большого Взрыва. В первые мгновения реализуется так называемая дозвездная стадия образования элементов, стадия образования легчайших элементов. Какая из этих двух реакций играет более существенную роль, зависит от температуры звезды.

В звездах, имеющих массу, сравнимую с массой Солнца, и меньше, доминирует протон - протонная цепочка.

Основное время эволюции звезды связано с горением водорода.

Но на этой стадии звездной эволюции массивных звезд существенную роль начинают играть многочисленные реакции с участием нейтронов, протонов, а-частиц и 7- квантов

Характерные особенности реакций горения углерода и кислорода следующие

Продукты s-процесса должны эффективно выноситься во внешнюю оболочку звезды и попадать в межзвездную среду без дальнейших ядерных реакций.

Один из аргументов в подтверждение r-процесса в звездах - наличие сдвоенных максимумов, коррелирующих с магическими числами нейтронов N = 50, 82 и 126

В углеродно-азотном цикле ядро углерода C служит как бы катализатором.

Из четырех основных источников ядерной энергии в настоящее время удалось довести до промышленной реализации только два: энергия радиоактивного распада утилизируется в источниках тока, а цепная реакция деления - в атомных реакторах. Третий (наиболее мощный) источник ядерной энергии - аннигиляция элементарных частиц пока не вышел из области фантастики. Четвертый же источник - управляемый термоядерный синтез, УТС, находится на повестке дня. Этот источник по своему потенциалу хотя и меньше третьего, но существенно превышает второй. Надежды на УТЯС связаны с двумя обстоятельствами: согласно современным представлениям звезды (в том числе наше Солнце) существует за счет стационарной термоядерной реакции, и неконтролируемый термоядерный процесс удалось довольно просто реализовать во взрыве водородной бомбы. Кажется, нет никаких принципиальных препятствий для поддержания управляемой реакции ядерного синтеза и на Земле. Однако, интенсивные попытки реализовать в лабораторных условиях УТЯС окончились полным провалом. Более того, оптимистические заявки некоторых ученых и инженеров, что термоядерный синтез будет поставлен на службу энергетики в 21-м веке, кажутся ничем не обоснованными.

Тем не менее, сейчас ядерный синтез рассматривается как важное технологическое решение, направленное на замену ископаемого топлива в производстве энергии. Всемирная потребность в энергии требующая незамедлительного увеличения производства электроэнергии по крайней мере в два раза, исчерпаемость сырья и возрастающее беспокойство по поводу глобального потепления климата стимулирует поиск новых, иногда довольно экзотических, решений.

В данной лекции мы рассмотрим особенности реакций термоядерного синтеза, существующие и проектируемые установки реализации управляемого синтеза и перспективы подобных установок для создания нового направления энергетики. Мы так же попытаемся ответить на вопрос, почему пятидесятилетние активные исследования плазмы не увенчались успехом и почему термояд не будет поставлен на службу человеку в течение ближайших десятилетий.


На главную