Атомная энергетика России Инженерная графика и машиностроительное черчение Математика Курс лекций и примеры решения задач Информатика Электротехника Физика курс лекций примеры решения задач
Метод проецирования Способы задания плоскости на эпюре Примеры позиционных и метрических задач на плоскость Метод плоско-параллельного перемещения Пересечение поверхностей призм и пирамид Геометрические основы теории теней

Начертательная геометрия Методы проецирования Аксонометрические проекции

Для получения изображения в определенной проекции необходимо рассчитать координаты проекции. Из них можно получить координаты для графического устройства - назовем их экранными координатами. Для синтеза изображения на плоскости достаточно двумерной системы координат. Однако в некоторых алгоритмах визуализации используются трехмерные экранные координаты, например, в алгоритме Z-буфера.

Построение аксонометрических изображений.

Построение в изометрической проекции плоских фигур.

На рисунке 11.12 дан правильный шестиугольник, расположенный параллельно горизонтальной плоскости проекций. Требуется построить изометрию шестиугольника.

Рисунок 11.12

Если фигура, изображение которой необходимо построить, симметричная, то координатные оси удобно совмещать с осями ее симметрии, как показано на рисунке 11.12а. Проводят изометрические оси x’ и y’ рисунок 11.12б. Из точки 0’ по оси x’ откладывают вправо и влево отрезки, равные по величине отрезку 0А, а по оси y’ – отрезки 0’N’ = 0N и О’М’ = ОМ и через полученные точки N’ и М’ проводят прямые, параллельные оси x’. На этих прямых откладывают величины N’F’ = N’E’ = M’B’ = M’C’ = N’F’. Фигура A’B’C’Д’Е’ есть изображение шестиугольника в изометрии. [an error occurred while processing this directive]

На рисунке 11.12в изображен в изометрии шестиугольник (правильный), параллельный фронтальной плоскости проекции, а на рисунке 11.12г – шестиугольник, параллельный профильной плоскости.

При построении аксонометрических проекций необходимо помнить, что координаты точек или отрезки прямых можно откладывать только по осям или по линиям, параллельным осям.

Построение аксонометрической проекции окружности.

Общие положения. Наиболее сложной плоской фигурой для вычерчивания в аксонометрии является окружность. Из курса начертательной геометрии известно, что в общем случае окружность в аксонометрии проецируется в эллипс, но так как построение эллипса сравнительно сложно, его заменяют четырехцентовым овалом. Далее рассматриваются различные способы построения овалов, заменяющих эллипсы, для прямоугольных изометрических и диметрические проекций; даются размеры большой и малой осей эллипсов и графические способы их определения.

При построении окружности в прямоугольных и косоугольных аксонометрических проекциях исходным положение М следует считать то, что малая ось эллипса всегда располагается по направлению отсутствующей в данной плоскости аксонометрической оси, а большая ось к ней перпендикулярна.

Построение окружности в прямоугольной изометрической проекции.

Окружности, лежащие в плоскостях, параллельных плоскости проекций, проецируются на аксонометрическую плоскость в эллипсы. Если изометрическую проекцию выполнить без искажения по осям x, y, z, то большая ось эллипса равна 1,22 Ø, а малая ось – 0,71 Ø. (Ø – диаметр окружности. Построим окружность в плоскости х о у (рисунок 11.13).

Рисунок 13

Сначала находим центр окружности С1, проводим через него линии, параллельные осям OX и OY и откладываем на них от точки С1 натуральную величину радиуса окружности – находим точки 1’, 2’, 3’, 4’. Проводим направление большой оси эллипса перпендикулярно оси OZ и откладываем на нем размер, равный 1,22 Ø. Перпендикулярно большой оси эллипса строим малую ось эллипса длинной 0,7 Ø. Найденные точки соединяем плавной кривой.

Аналогично проводим построение эллипсов, являющихся изометрическими проекциями окружностей, лежащих в плоскостях xoz и yoz.

Необходимо знать, что направление большой оси эллипса всегда перпендикулярно аксонометрической оси, не лежащей в плоскости, к которой относится эллипс.

Обычно для упрощения построения аксонометрических проекций эллипсы заменяют очень близкими им по начертанию овалами.

Существует несколько способов построения овалов.

На рисунке 11.14 показана последовательность построения овалов по большой и малой осям эллипса. Построение понятно из чертежа.

Рисунок 11.14

Другой способ построения овала не требует определения большой и малой осей эллипса (рисунок 11.15).

Рисунок 11.15

Построении в диметрической проекции плоских фигур.

Построим правильный шестиугольник в диметрической проекции.

Рисунок 11.16

По оси ox откладываются отрезки 01’ = 01 и 02’ = 02, а по оси oy – расстояние 03 и 04, уменьшенное в 2 раза /03’ и 04’/. Дальнейшие построения аналогичны построениям шестиугольника в изометрической проекции (рисунок 11.17).

Рисунок 11.17

Геометрические тела, имеющие квадратные поверхности, строятся преимущественно в прямоугольной диметрии (рис.11.12).

Задача4: плоскость общего положения перевести в проецирующее положение.

Для решения задачи построим в ∆ АВС горизонталь h, преобразуем систему  в систему ; П4 перпендикулярна к плоскости ∆ АВС; на чертеже проводим ось Х14h1.

 - угол наклона плоскости к к плоскости П1.

Задача 5: проецирующую плоскость перевести в положение уровня.


Заменим плоскости П1 на П4; П4 расположена параллельно плоскости ∆ АВС. Проводим ось Х14 параллельно А1В1С1.

 

Для центральной проекции (также называемой перспективной) лучи проецирования исходят из одной точки, размещенной на конечном расстоянии от объектов и плоскости проецирования. Для параллельной проекции лучи проецирования параллельны.
Построить собственные и падающие тени заданных призм