Атомная энергетика России Инженерная графика и машиностроительное черчение Математика Курс лекций и примеры решения задач Информатика Электротехника Физика курс лекций примеры решения задач
Аппарат дифференциальных уравнений в экономике Элементы линейного программирования

Математическая статистика

Свойства дисперсии

Приведем здесь основные свойства дисперсии.

Свойство 1. Дисперсия постоянной величины С равна нулю:

Свойство 2. Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат:

Свойство 3. Дисперсия суммы независимых случайных величин равна сумме их дисперсий:

Перечисленные свойства дисперсии используются при вычислениях, когда мы имеем дело с несколькими случайными величинами. Из свойств 1 и 3 следует важный вывод: D(X + C) = D(X), где С — постоянная величина. Кроме того, справедлива следующая теорема.

ТЕОРЕМА 2. Дисперсия числа появления события А в п независимых испытаниях с вероятностью появления р в каждом из них этого события вычисляется по формуле

Приведем здесь еще два важных результата: для случайной величины, распределенной по закону Пуассона (18.4), математическое ожидание и дисперсия равны параметру данного распределения.

Пример 7. Найти дисперсию числа выигрышных лотерейных билетов по данным примера 4.

Решение. Имеем 200 независимых испытаний с вероятностью появления выигрышного билета р = 0,015. Стало быть, q = 1 - 0,015 = 0,985, откуда и получаем искомую дисперсию:

Пример 8. Банк выдал ссуды п разным заемщикам в размере S р. каждому под ставку ссудного процента r. Найти математическое ожидание и дисперсию прибыли банка, а также условие на ставку ссудного процента, если вероятность возврата ссуды заемщиком равна р.

Решение. Поскольку заемщики между собой не связаны, то можно полагать, что мы имеем п независимых испытаний. Вероятность утери ссуды для банка в каждом испытании равна q = 1 - р. Пусть Х — число заемщиков, возвративших ссуду с ссудным процентом, тогда прибыль банка определяется формулой

где Х является случайной величиной с биномиальным законом распределения. Тогда, согласно теореме 18.1, математическое ожидание прибыли определяется с использованием формулы (18.7):

Поскольку выдача ссуды имеет смысл лишь при положительном математическом ожидании прибыли (положительная средняя величина прибыли), то из условия М(П) > 0 вытекает условие на ставку ссудного процента:

Дисперсия прибыли банка находится, согласно теореме 18.2, с использованием формулы (18.14) и свойств 1-3:

Среднее квадратическое отклонение

Одной из основных оценок рассеяния возможных значений случайной величины служит среднее квадратическое отклонение.

Определение 4. Средним квадратическим отклонением случайной величины Х (стандартом) называется квадратный корень из ее дисперсии:

Согласно этому определению, из свойства 3 и формулы (18.13) следует, что в случае суммы взаимно независимых случайных величин справедлива формула

Пример 9. Найти дисперсию и среднее квадратическое отклонение случайной величины X, заданной следующим распределением:

Решение. Имеем М(Х) = 2,6. Составим таблицу распределения случайной величины X2:

Отсюда получаем, что М(Х2) = 14,4. По формулам (18.11) и (18.15) окончательно получаем искомые значения D(X) и. σ(Х):

Пример 10. Законы распределения независимых случайных величин Х и Y приведены соответственно в таблицах:

Найти дисперсию и среднее квадратическое отклонение случайной величины Z = 2Х + 3Y.

Решение. Согласно свойствам 2 и 3 дисперсии (формулы (18.12) и (18.13)), имеем

Для вычисления дисперсий D(X) и D(Y) составляем соответствующие таблицы — законы распределения случайных величин Х2 и Y2:

Отсюда получаем

Искомые дисперсия и среднее квадратичное отклонение случайной величины Z равны:

Пример 11. В условиях примера 8 найти математическое ожидание и среднее квадратическое отклонение прибыли при п = 1000, р = 0,8, S = 100 тыс. р. и r = 30%.

Решение. Ставка ссудного процента удовлетворяет условию, чтобы математическое ожидание прибыли было положительным: 30 > 100 (1 - 0,8) / 0,8. Математическое ожидание прибыли:

Среднее квадратическое отклонение прибыли:

Начальные и центральные моменты

Определение 5. Начальным моментом порядка k случайной величины Х называется математическое ожидание величины Хk:

В частности,

и тогда формула (18.11) для вычисления дисперсии принимает вид

Определение 6. Центральным моментом порядка k случайной величины Х называется математическое ожидание k-й степени отклонения:

В частности, согласно формуле (18.9), μ1 = 0, а дисперсия случайной величины Х является центральным моментом второго порядка:

Соотношения, связывающие начальные и центральные моменты, также могут быть легко получены. Приведем их здесь для моментов третьего и четвертого порядков (они наряду с моментами первого и второго порядков широко применяются в статистике):

Моменты более высоких порядков применяются крайне редко.

Моменты, рассмотренные в этом разделе, называют теоретическими. В отличие от них моменты, вычисляемые по данным наблюдений в математической статистике, называют эмпирическими.

Основные правила дифференцирования.

  Обозначим f(x) = u, g(x) = v- функции, дифференцируемые в точке х.

1) (u ± v)¢ = u¢ ± v¢

2) (u×v)¢ = u×v¢ + u¢×v

3), если v ¹ 0

 Эти правила могут быть легко доказаны на основе теорем о пределах.

Замена переменных.

 Пусть задан интеграл , где f(x) – непрерывная функция на отрезке [a, b].

Введем новую переменную в соответствии с формулой x = j(t).

 Тогда если

1) j(a) = а, j(b) = b

2) j(t) и j¢(t) непрерывны на отрезке [a, b]

3) f(j(t)) определена на отрезке [a, b], то


Системы линейных алгебраических уравнений