Атомная энергетика России Инженерная графика и машиностроительное черчение Математика Курс лекций и примеры решения задач Информатика Электротехника Физика курс лекций примеры решения задач
Математический анализ Применение производных в исследовании функций

Применение элементов линейной алгебры в экономике

Обобщения теорем сложения и умножения

Появление только одного из независимых событий

Рассмотрим примеры совместного применения теорем сложения и умножения. Пусть два независимых события А1 и А2 имеют вероятности появления соответственно p1 и р2. Найдем вероятность появления только одного из этих событий. Для этого введем новые события: В1 и B2. Событие В1 состоит в том, что событие А1 наступило, а событие А2 не наступило; иными словами, В1 = A12. Аналогичным образом определяется и событие B2 = 1A2 (совместное ненаступление события A1 и наступление события А2). Поскольку события А1 и A2 независимы, то независимы также и противоположные coбытия 1 и 2; тогда события В1 и В2 являются несовместными. Вероятность наступления только одного из событий А1 и А2 находится как сумма вероятностей несовместных событий В1 и B2:

где q1 = 1 – p1 , q2 = 1 - р2.

Аналогичным образом можно убедиться в справедливости формулы вероятности наступления только одного из трех независимых событий A1, А2, А3 с вероятностями наступления соответственно р1, р2 и р3:

где Bi — произведения наступившего события Аi и двух других ненаступивших событий (i = 1, 2, 3). Для случая п независимых событий формула вероятности наступления только одного из них имеет аналогичный вид — сумма п слагаемых, каждый член которой представляет собой произведение вероятности наступления одного из событий на вероятности (n - 1) других противоположных событий.

Пример 1. Предприниматель решил вложить свои средства поровну в два контракта, каждый из которых принесет ему прибыль в размере 100%. Вероятность того, что любой из контрактов не "лопнет", равна 0,8. Какова вероятность того, что по истечении контрактов предприниматель по меньшей мере ничего не потеряет?

Решение. Предприниматель по крайней мере ничего не потеряет, если либо не "лопнет" один из контрактов (другой возместит ему потери), либо будут выполнены оба контракта. Пусть события А1 и А2 — это выполнение соответствующих контрактов (вероятность р = 0,8); эти события являются независимыми. Противоположные им события 1 и 2 — невыполнение контрактов (вероятность q = 0,2). Тогда события В1 = А12, В2 = 1A2 и A1A2 являются несовместными (последнее событие — это выполнение обоих контрактов). Искомая вероятность определяется с учетом формул (17.10) и (17.7):

Теорема сложения вероятностей совместных событий

Определение 1. События А и В называют совместными, если в одном и том же испытании появление одного из них не исключает появления другого.

Для таких событий справедлива следующая теорема.

ТЕОРЕМА 5. Вероятность суммы совместных событий равна сумме их вероятностей без вероятности их произведения:

Из формулы (17.12) получается ряд следующих частных случаев.

1. Для независимых событий с учетом формулы (17.7)

2. Для зависимых событий с учетом формулы (17.5)

3. Для несовместных событий Р(АВ) = 0, и в этом случае имеем подтверждение теоремы 17.1 и формулы (17.3):

Пример 2. Вероятности поражения цели первым и вторым стрелками равны соответственно 0,8 и 0,9. Найти вероятность поражения цели при залпе.

Решение. Поскольку вероятности поражения цели стрелками (события А и В соответственно) не зависят от результатов стрельбы каждого из напарников, то эти события независимы. Искомая вероятность рассчитывается по формуле (17.13):

Аналогичный результат можно было бы получить и с применением формулы (17.8). Пусть событие А — поражение цели,  и  — события, соответствующие промахам стрелков, тогда

Формула полной вероятности

Пусть события В1, В2, …, Вп несовместны и образуют полную группу, т.е., согласно теореме 17.2, выполняется равенство

Пусть также событие А может наступить при условии появления одного из событий Вi, причем известны как вероятности P(Bi), так и условные вероятности PBi(A) (i = 1, 2, ... , п). В таком случае формула для вероятности события А определяется следующей теоремой.

ТЕОРЕМА 6. Вероятность события А, появление которого возможно лишь при наступлении одного из несовместных событий Bi, образующих полную группу (i = 1, 2, ... ,п), равна сумме попарных произведений каждого из этих событий на соответствующую условную вероятность появления события А:

Пример 3. В двух урнах находятся белые и красные шары: в первой — 4 белых и 5 красных, во второй — 7 белых и 3 красных. Из второй урны наудачу взяли шар и переложили его в первую урну. Найти вероятность того, что наудачу взятый после этого из первой урны шар будет белым.

Решение. Перекладывание из второй урны в первую белого шара (событие В1) и красного шара (событие В2) образует полную группу независимых событий. Их вероятности соответственно P(B1) = 0,7 и Р(В2) = 0,3. Условные вероятности извлечения из первой урны белого шара (событие А) при добавлении туда белого или красного шара из второй урны соответственно равны РB1(А) = 0,5 и РB2(А) = 0,4. Искомая вероятность находится по формуле (17.14) при п = 2:

Пример 4. В двух ящиках находятся детали: в первом — 10 штук и из них 3 нестандартные, а во втором — 20 штук и из них 8 нестандартных. Из каждого ящика наудачу вынуто по одной детали, а потом из этих двух деталей наудачу взята одна. Найти вероятность того, что эта деталь окажется стандартной.

Решение. При первой выборке двух деталей возможны четыре случая, которые образуют полную группу независимых событий. События Bss, Bsn, Bns, Bnn соответствуют случаям изъятия: из первого и второго ящиков по стандартной детали, из первого ящика — стандартной и из второго — нестандартной деталей, из первого ящика — нестандартной и из второго — стандартной, из первого и второго ящиков по нестандартной детали. В свою очередь события Вik (i, k = s, n) представляют собой произведения независимых событий — изъятия из каждого ящика по детали, и потому их вероятности равны соответствующим произведениям вероятностей этих изъятий: P(Bss) = 0,7 • 0,6 = 0,42; P(Bsn) = 0,7 • 0,4 = 0,28; P(Bns) = 0,3 • 0,6 = 0,18; P(Bnn) = 0,3 • 0,4 = 0,12. Условные вероятности выборки из двух деталей стандартной, согласно перечисленным выше возможным случаям, равны:

Теперь, согласно теореме 17.6 и формуле (17.14), получаем искомую вероятность события А:

Формулы Байеса

Пусть события B1, B2, ..., Вп несовместны и образуют полную группу, а событие А может наступить при условии появления одного из них. События Bi называют гипотезами, так как заранее неизвестно, какое из них наступит. Пусть произведено испытание и в результате появилось событие А. Тогда оказывается возможным определить условные вероятности гипотез Bi по следующим формулам:

Формулы (17.15) называются формулами Байеса, по имени их автора. Они позволяют оценить вероятность гипотезы Вi во всех испытаниях, где наступает событие А. Иными словами, зная вероятность Р(Вi) до проведения испытания, мы можем переоценить ее после проведения испытания, в результате которого появилось событие А.

Пример 5. Вероятность изготовления изделия с браком равна 0,08. После изготовления все изделия подвергаются проверке, в результате которой изделия без брака признаются годными с вероятностью 0,95, а изделия с браком — с вероятностью 0,06. Найти долю изделий, выпущенных после проверки, а также вероятность того, что выпущенное после проверки изделие окажется без брака.

Решение. Независимые события (гипотезы), образующие полную группу, — это B1 (изделие без брака) и В2 (изделие с браком). Пусть событие А заключается в том, что при проверке изделие признается годным. Ответ на первый вопрос задачи дает формула (17.14):

Следовательно, после проверки признаются годными около 88% всех изготовленных изделий.

Ответ на второй вопрос задачи дает формула Байеса (17.15) при п = 2 и i = 1:

Иными словами, среди изделий, прошедших проверку, содержится 99, 5% изделий без брака.

Пример 6. В среднем из каждых 100 клиентов отделения банка 60 обслуживаются первым операционистом и 40 — вторым операционистом. Вероятность того, что клиент будет обслужен без помощи заведующего отделением, только самим операционистом, составляет 0,9 и 0,75 соответственно для первого и второго служащих банка. Найти вероятность полного обслуживания клиента первым операционистом.

Решение. Вероятность того, что клиент попадет к первому операционисту (событие B1), составляет 0,6, ко второму — 0,4 (событие В2). Искомая вероятность полного обслуживания клиента первым операционистом (событие А) определяется по формулам (17.14) и (17.15):

Иными словами, 64% клиентов, попавших на обслуживание к первому операционисту, будут обслужены им полностью.

 Пример. Найти асимптоты и построить график функции .

1) Вертикальные асимптоты: y®+¥ x®0-0:  y®-¥  x®0+0, следовательно, х = 0- вертикальная асимптота.

2) Наклонные асимптоты:

Таким образом, прямая у = х + 2 является наклонной асимптотой.

Построим график функции:

Теорема Ньютона-Лейбница.

 Пусть в интеграле  нижний предел а = const, а верхний предел b изменяется. Очевидно, что если изменяется верхний предел, то изменяется и значение интеграла.

  Обозначим  = Ф(х). Найдем производную функции Ф(х) по переменному верхнему пределу х.

  Аналогичную теорему можно доказать для случая переменного нижнего предела.

  Теорема: Для всякой функции f(x), непрерывной на отрезке [a, b], существует на этом отрезке первообразная, а значит, существует неопределенный интеграл.


Основы дифференциального исчисления