Атомная энергетика России Инженерная графика и машиностроительное черчение Математика Курс лекций и примеры решения задач Информатика Электротехника Физика курс лекций примеры решения задач
Математический анализ Применение производных в исследовании функций

Применение элементов линейной алгебры в экономике

Характеристическое уравнение

В п. 13.1 было введено определение собственного значения и гобственного вектора матрицы. Пусть  — собственный вектор квадратной матрицы А порядка n. Тогда имеет место матричное уравнение

или

где λ — собственное значение матрицы А, а E и  — соответственно единичная матрица и нулевой вектор-столбец. Уравнение (15.17) эквивалентно системе однородных уравнений

В уравнениях (15.18) aij — элементы матрицы А, xj — координаты собственного вектора х. Поскольку собственный вектор не является нулевым, то однородная система (15.18) должна иметь ненулевое решение, т.е. в силу следствия 2 (см. выше) определитель этой системы равен нулю:

Определитель системы однородных уравнений (15.18) называется характеристическим многочленом, а уравнение (15.19) — характеристическим уравнением матрицы А.

Уравнение (15.19) имеет степень n относительно неизвестной λ. Его корни являются собственными числами матрицы А. Определив набор этих чисел, для каждого из них можно найти соответствующий собственный вектор как решение однородной системы (15.18).

Пример 2. Найти собственные числа и собственные векторы матрицы

Решение. Характеристическое уравнение для этой матрицы имеет вид

откуда, раскрывая определитель, получаем

Корни этого уравнения суть λ1 = 2, λ2 = 5. Для нахождения собственных векторов подставим найденные собственные значения в систему однородных уравнений (15.18) при n = 2 с соответствующими элементами заданной матрицы А. Собственный вектор, соответствующий собственному значению λ1 = 2, является решением системы

Пo сути дела, это одно уравнение, поскольку определитель системы равен нулю. Полагая x2 = b свободной переменной, получаем первый собственный вектор 1 = (—2b, b) = b (-2, 1). Подстановка второго собственного значения λ2 = 5 приводит к системе уравнений

которая через свободную переменную x2 = с определяет второй собственный вектор матрицы А: 2 = (с, с) = с (1, 1).

Поскольку b и с — произвольные числа, то одному собственному значению может соответствовать несколько собственных векторов разной длины. Например, собственные векторы, соответствующие фундаментальным решениям однородных систем (в данном случае их будет по одному на каждое собственное значение), имеют вид 1 = (-2, 1), 2 = (1, 1).

УПРАЖНЕНИЯ

Решить методом Крамера системы линейных уравнений.

Решить системы линейных уравнений методом Гаусса.

Решить методом обратной матрицы системы уравнений, предварительно вычислив методом Гаусса обратную матрицу.

Найти фундаментальные системы решений однородных систем.

Найти собственные векторы и собственные значения матриц.

 Пример. Доказать, что предел последовательности lim .

Пусть при n > N верно , т.е. . Это верно при , таким образом, если за N взять целую часть от , то утверждение, приведенное выше, выполняется.

 Пример. Показать, что при n®¥ последовательность 3,  имеет пределом число 2.

 Итого: {xn}= 2 + 1/n; 1/n = xn – 2

Очевидно, что существует такое число n, что , т.е. lim {xn} = 2.

 Теорема. Последовательность не может иметь более одного предела.

 Доказательство. Предположим, что последовательность {xn}имеет два предела a и b, не равные друг другу.

xn ® a; xn ® b; a ¹ b.

Тогда по определению существует такое число e >0, что

Запишем выражение:

А т.к. e- любое число, то , т.е. a = b. Теорема доказана.

Теорема Ньютона-Лейбница.

 Пусть в интеграле  нижний предел а = const, а верхний предел b изменяется. Очевидно, что если изменяется верхний предел, то изменяется и значение интеграла.

  Обозначим  = Ф(х). Найдем производную функции Ф(х) по переменному верхнему пределу х.

  Аналогичную теорему можно доказать для случая переменного нижнего предела.

  Теорема: Для всякой функции f(x), непрерывной на отрезке [a, b], существует на этом отрезке первообразная, а значит, существует неопределенный интеграл.


Основы дифференциального исчисления