Атомная энергетика России Инженерная графика и машиностроительное черчение Математика Курс лекций и примеры решения задач Информатика Электротехника Физика курс лекций примеры решения задач
Математический анализ Применение производных в исследовании функций

Применение элементов линейной алгебры в экономике

Геометрическая интерпретация системы линейных уравнений

Как известно, уравнения с двумя переменными вида

описывают на координатной плоскости Оху прямую. Система двух уравнений такого вида означает, что ее решения как точки на координатной плоскости должны принадлежать одновременно двум прямым, соответствующим уравнениям этой системы. Отсюда возможны следующие варианты: а) обе прямые пересекаются, и тогда система имеет единственное решение; б) прямые параллельны, и система не имеет решения (несовместна); в) прямые совпадают, т.е. ранг системы равен единице, и система имеет бесчисленное множество решений.

Уравнение с тремя переменными вида

описывает плоскость в трехмерном пространстве. Решение системы трех уравнений с тремя неизвестными — это точки пространства, принадлежащие одновременно трем плоскостям, которые описываются уравнениями системы. В этом случае возможны следующие варианты: а) три плоскости пересекаются в одной точке, и система имеет единственное решение; б) три плоскости пересекаются по одной прямой — система имеет бесчисленное множество решений (все точки на этой прямой); в) две плоскости совпадают, а третья пересекает их — бесчисленное множество решений (все точки прямой — на пересечении трех плоскостей), ранг системы равен двум; г) все три плоскости совпадают — все точки общей плоскости являются решениями, и ранг системы равен единице; д) хотя бы одна из плоскостей параллельна какой-либо из двух других — система несовместна; е) плоскости пересекаются попарно по параллельным прямым — система несовместна. В последних двух случаях несовместность системы уравнений обусловлена тем, что нет таких точек трехмерного пространства, которые принадлежали бы одновременно всем трем плоскостям.

В случае системы уравнений с n неизвестными каждое уравнение вида

можно интерпретировать как гиперплоскость в координатном пространстве An. Решение системы (15.1) — это множество точек пространства An, которые принадлежат одновременно всем m гиперплоскостям, соответствующим уравнениям этой системы.

Однородные системы линейных уравнений

Определение 1. Система линейных уравнений называется однородной, если во всех ее уравнениях свободные члены равны нулю.

В общем случае однородная система (или система однородных уравнений) имеет вид

Однородная система уравнений всегда совместна. Действительно, набор значений неизвестных xi = 0 (i = 1, 2,... , п) удовлетворяет всем уравнениям системы. Это решение однородной системы называется нулевым, или тривиальным.

Решение системы однородных уравнений

Вопрос о существовании ненулевого решения однородной системы линейных уравнений (15.14) разрешает следующая теорема.

ТЕОРЕМА 3. Однородная система имеет ненулевое решение тогда и только тогда, когда ранг этой системы меньше числа ее неизвестных.

Из этой теоремы вытекают два важных следствия.

Следствие 1. Если число уравнений однородной системы меньше числа ее неизвестных, то эта система имеет ненулевое решение.

Следствие 2. Если в однородной системе число уравнений равно числу неизвестных, то она имеет ненулевое решение тогда и только тогда, когда определитель матрицы системы равен нулю.

Фундаментальная система решений

Решения однородной системы обладают следующими свойствами. Если вектор  = (α1, α2,... ,αn) является решением системы (15.14), то и для любого числа k вектор k = (kα1, kα2,..., kαn) будет решением этой системы. Если решением системы (15.14) является вектор  = (γ1, γ2, ... ,γn), то сумма  +  также будет решением этой системы. Отсюда следует, что любая линейная комбинация решений однородной системы также является решением этой системы.

Как мы знаем из п. 12.2, всякая система n-мерных векторов, состоящая более чем из п векторов, является линейно зависимой. Таким образом, из множества векторов-решений однородной системы (15.14) можно выбрать базис, т.е. любой вектор-решение данной системы будет линейной комбинацией векторов этого базиса. Любой такой базис называется фундаментальной системой решений однородной системы линейных уравнений. Справедлива следующая теорема, которую мы приводим без доказательства.

ТЕОРЕМА 4. Если ранг r системы однородных уравнений (15.14) меньше числа неизвестных п, то всякая фундаментальная система решений системы (15.14) состоит из п - r решений.

Укажем теперь способ нахождения фундаментальной системы решений (ФСР). Пусть система однородных уравнений (15.14) имеет ранг r < п. Тогда, как следует из правил Крамера, базисные неизвестные этой системы x1, x2, … xr линейно выражаются через свободные переменные xr+1, xr+2 , ..., xп:

Выделим частные решения однородной системы (15.14) по следующему принципу. Для нахождения первого вектора-решения 1 положим xr+1 = 1, xr+2 = xr+3 = ... = xn = 0. Затем находим второе решение 2: принимаем xr+2 = 1, а остальные r - 1 свободных переменных положим нулями. Иными словами, мы последовательно присваиваем каждой свободной переменной единичное значение, положив остальные нулями. Таким образом, фундаментальная система решений в векторной форме с учетом первых r базисных переменных (15.15) имеет вид

ФСР (15.16) является одним из фундаментальных наборов решений однородной системы (15.14).

Пример 1. Найти решение и ФСР системы однородных уравнений

Решение. Будем решать эту систему методом Гаусса. Поскольку число уравнений системы меньше числа неизвестных, считаем х1, x2, х3 базисными неизвестными, а x4, х5, x6 — свободными переменными. Составим расширенную матрицу системы и выполним действия, составляющие прямой ход метода:

Преобразованная расширенная матрица соответствует системе уравнений, которая эквивалентна исходной однородной системе:

Обратный ход метода Гаусса дает значения базисных неизвестных, выраженные через свободные переменные:

Поскольку ранг однородной системы равен трем, то ФСР для нее состоит из трех линейно независимых векторов. По формулам (15.16) при п = 6 и r = 3, беря последовательно для свободных переменных тройки чисел (1, 0, 0), (0, 1, 0) и (0, 0, 1), получаем набор фундаментальных решений:

Производные и дифференциалы высших порядков.

  Пусть функция f(x)- дифференцируема на некотором интервале. Тогда, дифференцируя ее, получаем первую производную

  Если найти производную функции f¢(x), получим вторую производную функции f(x).

т.е. y¢¢ = (y¢)¢ или .

Этот процесс можно продолжить и далее, находя производные степени n.

.

Теорема Ньютона-Лейбница.

 Пусть в интеграле  нижний предел а = const, а верхний предел b изменяется. Очевидно, что если изменяется верхний предел, то изменяется и значение интеграла.

  Обозначим  = Ф(х). Найдем производную функции Ф(х) по переменному верхнему пределу х.

  Аналогичную теорему можно доказать для случая переменного нижнего предела.

  Теорема: Для всякой функции f(x), непрерывной на отрезке [a, b], существует на этом отрезке первообразная, а значит, существует неопределенный интеграл.


Основы дифференциального исчисления