Атомная энергетика России Инженерная графика и машиностроительное черчение Математика Курс лекций и примеры решения задач Информатика Электротехника Физика курс лекций примеры решения задач
Математический анализ Применение производных в исследовании функций

Основы математики Вычисление интеграла

Краевая задача для дифференциального уравнения второго порядка

Как было сказано в п. 10.1, в силу основной теоремы существования и единственности решения для уравнения второго порядка

определена задача Коши, когда в точке х = x0 заданы значения неизвестной функции и ее производной:

Если выполнены условия теоремы 10.1, то задача Коши (10.13), (10.14) однозначно определяет частное решение.

Однако существует и другой тип задач для дифференциальных уравнений второго порядка — значения неизвестной функции задаются в двух разных точках. Иными словами, при решении уравнения (10.13) на интервале (а, b) рассмотрим граничные условия наиболее простого вида на концах интервала

Свойства функций непрерывных на отрезках. Непрерывные на отрезке функции имеют ряд важных свойств.

В этом случае уравнение (10.13) совместно с условиями (10.14) называется первой краевой задачей для уравнения второго порядка. Поскольку второе условие в (10.15) равносильно второму условию в (10.14), то указанная краевая задача может иметь единственное решение, т.е. определять единственным образом частное решение дифференциального уравнения (10.13), проходящее через точки (x1, y1), (x2, y2). Так, для линейного дифференциального уравнения второго порядка первая краевая задача имеет решение, если определитель системы линейных алгебраических уравнений относительно произвольных постоянных C1 и С2

реализующей краевые условия (10.15), отличен от нуля. Здесь в соответствии с теоремой 10.4 (x) — частное решение неоднородного уравнения, у1(х) и у2(х) — линейно независимые решения соответствующего однородного уравнения. В таком случае краевая задача с условиями (10.15) однозначно определяет частное решение дифференциального уравнения (10.8).

Пример 1. Найти частное решение уравнения

удовлетворяющее краевым условиям

Общее решение этого уравнения было найдено в примере 4 и. 10.3:

Для отыскания частного решения, соответствующего данным краевым условиям, подставим это решение в эти краевые условия. Получаем систему линейных уравнений относительно произвольных постоянных С1 и С2

Нетрудно видеть, что определитель этой системы не равен нулю, т.е. данная краевая задача имеет решение. Вычитая из второго уравнения первое, умноженное на 2, получаем С2, а затем из первого уравнения — С1:

Отсюда решение данной краевой задачи как частное решение дифференциального уравнения, проходящее через точки (0, 1) и (ln 2, 2), имеет вид

УПРАЖНЕНИЯ

Найти общие решения линейных однородных уравнений с постоянными коэффициентами.

Найти общие решения неоднородных уравнений.

Найти решения уравнений второго порядка, удовлетворяющих указанным условиям задачи Коши.

Найти решения уравнений второго порядка, удовлетворяющих заданным краевым условиям.

Введение в математический анализ.

Числовая последовательность.

 Определение. Если каждому натуральному числу n поставлено в соответствие число хn, то говорят, что задана последовательность

x1, х2, …, хn = {xn}

 Общий элемент последовательности является функцией от n.

xn = f(n)

Таким образом последовательность может рассматриваться как функция.

Задать последовательность можно различными способами – главное, чтобы был указан способ получения любого члена последовательности.

 Пример. {xn} = {(-1)n} или {xn} = -1; 1; -1; 1; …

 {xn} = {sinpn/2} или {xn} = 1; 0; 1; 0; …

Для последовательностей можно определить следующие операции:

Умножение последовательности на число m: m{xn} = {mxn}, т.е. mx1, mx2, …

Сложение (вычитание) последовательностей: {xn} ± {yn} = {xn ± yn}.

Произведение последовательностей: {xn}×{yn} = {xn×yn}.

Частное последовательностей:  при {yn} ¹ 0.

Геометрически это представляется следующим образом: график функции f(x) ограничен сверху описанной ломаной линией, а снизу – вписанной ломаной.

 Обозначим maxDxi – наибольший отрезок разбиения, а minDxi – наименьший. Если maxDxi® 0, то число отрезков разбиения отрезка [a, b] стремится к бесконечности.

Если   , то

 Определение: Если при любых разбиениях отрезка [a, b] таких, что maxDxi® 0 и произвольном выборе точек ei интегральная сумма  стремится к пределу S, который называется определенным интегралом от f(x) на отрезке [a, b].

 Обозначение :


Основы дифференциального исчисления