Атомная энергетика России Инженерная графика и машиностроительное черчение Математика Курс лекций и примеры решения задач Информатика Электротехника Физика курс лекций примеры решения задач
Математический анализ Применение производных в исследовании функций

Основы математики Вычисление интеграла

Линейные уравнения первого порядка

Определение 7. Уравнение вида

где р(х) и q(x) — непрерывные функции, называется линейным дифференциальным уравнением первого порядка.

Неизвестная функция и ее производная входят в указанное уравнение в первой степени — линейно, что и объясняет название уравнения.

Если q(x)  0, то уравнение (9.7) называется линейным однородным уравнением; если же функция q(x) не равна тождественно нулю, то уравнение (9.7) называется линейным неоднородным уравнением.

Для линейного уравнения первого порядка можно выписать общее решение с помощью метода вариации постоянной. Здесь это решение приводится без вывода: Сложная функция. Правила дифференцирования функции.

Следует отметить, что некоторые нелинейные уравнения приводятся к линейным уравнениям соответствующими заменами неизвестной функции у(х). К таковым относится уравнение Бернулли

где р и q — непрерывные функции, a n — некоторое постоянное число. При п = 0 имеем линейное неоднородное уравнение, а при n = 1 — линейное однородное уравнение

Пусть п ≠ 0, n ≠ 1. Введем новую функцию

тогда

Поделим обе части уравнения (9.9) на уn:

Умножая обе части этого уравнения на (1 — n), с учетом выражений для новой функции z и ее производной получаем линейное дифференциальное неоднородное уравнение относительно неизвестной функции z(x):

В этом уравнении, метод решения которого нам известен, функция z(x) связана с искомой функцией у(x) соотношением (9.10).

Рассмотрим примеры решения неоднородных уравнений первого порядка.

Решение. Это линейное неоднородное уравнение первого порядка. Последовательное интегрирование в формуле (9.8) при р(х) = x2 и q(x) = х2 дает

(этот интеграл берется с помощью подстановки t = х3 в формулу (9.8)). Получаем решение дифференциального уравнения:

Решение. Тот же прием, что и в предыдущем примере, при р(х) = 1/х и q(x) = eх дает нам решение

Решение. Данное нелинейное уравнение представляет собой уравнение Бернулли при п = 3. Заменой искомой функции z = у-2, согласно (9.10) и (9.11), получим линейное неоднородное уравнение относительно z(х)

По формуле (9.8) получаем общее решение этого уравнения:

Теперь, выполняя обратную замену у = ±1/, получаем решение исходного нелинейного уравнения:

УПРАЖНЕНИЯ

Найти общие решения дифференциальных уравнений методом разделения переменных.

Найти частные решения уравнений первого порядка, удовлетворяющие указанным начальным условиям.

Найти общее решение линейных уравнений.

Решить уравнения Бернулли.

Теорема. Монотонная ограниченная последовательность имеет предел.

 Доказательство. Рассмотрим монотонную неубывающую последовательность

х1 £ х2 £ х3 ££ хn £ xn+1 £

Эта последовательность ограничена сверху: xn £ M, где М – некоторое число.

Т.к. любое, ограниченное сверху, числовое множество имеет четкую верхнюю грань, то для любого e>0 существует такое число N, что xN > a - e, где а – некоторая верхняя грань множества.

Т.к. {xn}- неубывающая последовательность, то при N > n а - e < xN £ xn,

xn > a - e.

Отсюда a - e < xn < a + e

-e < xn – a < e или ôxn - aô< e, т.е. lim xn = a.

Для остальных монотонных последовательностей доказательство аналогично.

Теорема доказана.

Геометрически это представляется следующим образом: график функции f(x) ограничен сверху описанной ломаной линией, а снизу – вписанной ломаной.

 Обозначим maxDxi – наибольший отрезок разбиения, а minDxi – наименьший. Если maxDxi® 0, то число отрезков разбиения отрезка [a, b] стремится к бесконечности.

Если   , то

 Определение: Если при любых разбиениях отрезка [a, b] таких, что maxDxi® 0 и произвольном выборе точек ei интегральная сумма  стремится к пределу S, который называется определенным интегралом от f(x) на отрезке [a, b].

 Обозначение :


Основы дифференциального исчисления