Атомная энергетика России Инженерная графика и машиностроительное черчение Математика Курс лекций и примеры решения задач Информатика Электротехника Физика курс лекций примеры решения задач
Математический анализ Применение производных в исследовании функций

Основы математики Математический анализ

Максимизация прибыли

Пусть Q — количество реализованного товара, R(Q) — функция дохода; C(Q) — функция затрат на производство товара. В реальности вид этих функций зависит в первую очередь от способа производства, организации инфраструктуры и т.п. Прибыль от реализации произведенного товара дается формулой

В микроэкономике известно утверждение: для того чтобы прибыль была максимальной, необходимо, чтобы предельный доход и предельные издержки были равны. Оба упомянутых предельных показателя определяются по аналогии с (5.14а), так что этот принцип можно записать в виде R'(Q) = C'(Q). Действительно, из необходимого условия экстремума для функции (5.16) следует, что П'(Q) = 0, откуда и получается основной принцип. Найти область сходимости функционального ряда

Пример 4. Найти максимум прибыли, если доход и издержки определяются следующими формулами:

Решение. Согласно (5.16), прибыль П(Q) = - Q3 + 36Q2 - 69Q — 4000. Приравнивая производную функции прибыли к нулю, получаем уравнение

Корни этого уравнения Q1 = 1, Q2 = 23. Проверка показывает, что максимальная прибыль достигается при Q = 23: Пmах = 1290.

Закон убывающей эффективности производства

Этот закон утверждает, что при увеличении одного из основных факторов производства, например капитальных затрат К, прирост производства начиная с некоторого значения К является убывающей функцией. Иными словами, объем произведенной продукции V как функция от К описывается графиком со сменой выпуклости вниз на выпуклость вверх.

Пример 5. Пусть эта функция дается уравнением

где b и с — известные положительные числа (они определяются прежде всего структурой организации производства), а Vlim — предельно возможный объем выпускаемой продукции. Нетрудно подсчитать, что вторая производная функции (5.17) имеет вид

Критическая точка находится из условия V"(K) = 0, откуда

График функции (5.17) приведен на рис. 5.10. В точке перегиба (5.18) выпуклость графика функции вниз меняется на выпуклость вверх. До этой точки увеличение капитальных затрат приводит к интенсивному росту объема продукции: темп прироста объема продукции (аналог первой производной) возрастает, т.е. V"(K) > 0. При К > Кcr темп прироста объема выпускаемой продукции снижается, т.е. V"(K) < 0, и эффективность увеличения капитальных затрат падает.

Таким образом, в стратегии капиталовложений оказывается очень важным моментом определение критического объема затрат, сверх которого дополнительные затраты будут приводить все к меньшей отдаче при данной структуре организации производства. Зная этот прогноз, можно пытаться совершенствовать и менять структуру организации производства: "улучшать" показатели b, с и Vlim в сторону повышения эффективности капиталовложений.

УПРАЖНЕНИЯ

Найти пределы с использованием правила Лопиталя.

5.1. . 5.2. .

5.3. . 5.4. .

5.5. . 5.6. . 5.7. .

5.8. . 5.9. .

5.10. . 5.11. .

5.12. Разложить по формуле Маклорена функцию f(x) = tg x до члена с x3 включительно.

5.13. Разложить по формуле Маклорена функцию f(x) = e-x до члена с x2 включительно.

Найти пределы с использованием разложений по формуле Маклорена.

5.14. . 5.15. .

5.16. . 5.17. .

Найти интервалы выпуклости и точки перегиба графиков функций.

5.18. . 5.19.

5.20. .

Найти асимптоты графиков функций.

5.21. . 5.22. .

5.23. .

Исследовать и построить графики функций.

5.24. . 5.25. .

5.26. . 5.27.  .

5.28. . 5.29. .

5.30. . 5.31.

5.32. . 5.33..

Решите задачи на наибольшее и наименьшее значения.

5.34. Разложить число 12 на два слагаемых так, чтобы их произведение было наибольшим.

5.35. Определить размеры открытого бассейна с квадратным дном объемом V, при которых на облицовку дна и стен пойдет наименьшее количество материала.

5.36. Даны точки А(0, 3) и В(4, 5). На оси Ох найти точку, сумма расстояний от которой до точек А и В наименьшая.

Решите задачи с экономическим содержанием.

5.37. Зависимость между издержками производства С и объемом продукции Q выражается функцией С = 30Q — 0,08Q3. Определить средние и предельные издержки при объеме продукции: а) Q = 5 ед., б) Q = 10 ед.

5.38. Функции долговременного спроса D и предложения S от цены р на мировом рынке нефти имеют соответственно вид

1) Найти эластичность спроса в точке равновесной цены.

2) Как изменятся равновесная цена и эластичность спроса при уменьшении предложения нефти на рынке на 25%?

5.39. Функции спроса D и предложения S от цены р выражаются соответственно уравнениями

Найти эластичность спроса и предложения при равновесной цене, а также изменение дохода (в процентах) при увеличении цены на 10%.

5.40. Зависимость объема выпуска продукции V от капитальных затрат К определяется функцией V = V0 ln (4 + K3). Найти интервал изменения К, на котором увеличение капитальных затрат неэффективно.

Исследование функций с помощью производной.

Возрастание и убывание функций.

 Теорема. 1) Если функция f(x) имеет производную на отрезке [a, b] и возрастает на этом отрезке, то ее производная на этом отрезке неотрицательна, т.е. f¢(x) ³ 0.

 2) Если функция f(x) непрерывна на отрезке [a, b] и дифференцируема на промежутке (а, b), причем f¢(x) > 0 для a < x < b, то эта функция возрастает на отрезке [a, b].

 Доказательство.

Если функция f(x) возрастает, то f(x + Dx) > f(x) при Dx>0 и f(x + Dx) < f(x) при Dх<0,

тогда:

2) Пусть f¢(x)>0 для любых точек х1 и х2, принадлежащих отрезку [a, b], причем x1<x2.

Несколько примеров интегралов, не выражающихся через

элементарные функции.

 К таким интегралам относится интеграл вида , где Р(х) - многочлен степени выше второй. Эти интегралы называются эллиптическими.

 Если степень многочлена Р(х) выше четвертой, то интеграл называется ультраэллиптическим.

 Если все – таки интеграл такого вида выражается через элементарные функции, то он называется псевдоэллиптическим.

 Не могут быть выражены через элементарные функции следующие интегралы:


Основы дифференциального исчисления